S RNase and Interspecific Pollen Rejection in the Genus Nicotiana: Multiple Pollen-Rejection Pathways Contribute to Unilateral Incompatibility between Self-Incompatible and Self-Compatible Species.
نویسندگان
چکیده
In self-incompatible (SI) plants, the S locus acts to prevent growth of self-pollen and thus promotes outcrossing within the species. Interspecific crosses between SI and self-compatible (SC) species often show unilateral incompatibility that follows the SI x SC rule: SI species reject pollen from SC species, but the reciprocal crosses are usually compatible. The general validity of the SI x SC rule suggests a link between SI and interspecific pollen rejection; however, this link has been questioned because of a number of exceptions to the rule. To clarify the role of the S locus in interspecific pollen rejection, we transformed several Nicotiana species and hybrids with genes encoding SA2 or SC10 RNase from SI N. alata. Compatibility phenotypes in the transgenic plants were tested using pollen from three SC species showing unilateral incompatibility with N. alata. S RNase was implicated in rejecting pollen from all three species. Rejection of N. plumbaginifolia pollen was similar to S allele-specific pollen rejection, showing a requirement for both S RNase and other genetic factors from N. alata. In contrast, S RNase-dependent rejection of N. glutinosa and N. tabacum pollen proceeded without these additional factors. N. alata also rejects pollen from the latter two species through an S RNase-independent mechanism. Our results implicate the S locus in all three systems, but it is clear that multiple mechanisms contribute to interspecific pollen rejection.
منابع مشابه
Restoring pistil-side self-incompatibility factors recapitulates an interspecific reproductive barrier between tomato species.
Interspecific reproductive barriers are poorly understood, but are central to the biological species concept. The pre-zygotic barriers between red- and green-fruited species in the tomato clade of the genus Solanum provide a model to better understand these barriers in plants. Compatibility usually follows the SI x SC rule: pollen from self-compatible (SC) red-fruited species is rejected on pis...
متن کاملInteractions in Interspecific Crosses between Members of the Tomato Clade
One premise of the biological species concept (BSC) is that reproductive barriers act to prevent interbreeding between species. While the BSC is not universally applicable, interspecifi c reproductive barriers (IRBs) between species can be detected in many cases. For example, in the tomato clade ( Solanum sect. Lycopersicon ) prezygotic IRBs can prevent hybridization between certain species ( R...
متن کاملFine mapping of ui6.1, a gametophytic factor controlling pollen-side unilateral incompatibility in interspecific solanum hybrids.
Unilateral incompatibility (UI) is a prezygotic reproductive barrier in plants that prevents fertilization by foreign (interspecific) pollen through the inhibition of pollen tube growth. Incompatibility occurs in one direction only, most often when the female is a self-incompatible species and the male is self-compatible (the "SI x SC rule"). Pistils of the wild tomato relative Solanum lycopers...
متن کاملS-RNase complexes and pollen rejection.
Biochemical interactions between the pollen and the pistil allow plants fine control over fertilization. S-RNase-based pollen rejection is among the most widespread and best understood of these interactions. At least three plant families have S-RNase-based self-incompatibility (SI) systems, and S-RNases have also been implicated in interspecific pollen rejection. Although S-RNases determine the...
متن کاملSIPP, a Novel Mitochondrial Phosphate Carrier, Mediates in Self-Incompatibility.
In Solanaceae, the S-specific interaction between the pistil S-RNase and the pollen S-Locus F-box protein controls self-incompatibility (SI). Although this interaction defines the specificity of the pollen rejection response, the identification of three pistil essential modifier genes unlinked to the S-locus (HT-B, 120K, and NaStEP) unveils a higher degree of complexity in the pollen rejection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 8 6 شماره
صفحات -
تاریخ انتشار 1996